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1 Executive summary

In this deliverable, we provide the scientific summary of the different tasks and advances in Cloud-
Stars, Work Package 4, related to Cloud systems for Al and Data Analytics. This includes those tasks
focusing on the researched and developed methods of Al for Cloud/Edge management and config-
uration, characterization, and modeling of infrastructures and applications. Specifically, the general
objectives for the current tasks are:

¢ Al and Machine Learning (ML) for optimizing Cloud systems: advance on ML techniques, like
statistical and deep learning, for managing containerized Cloud systems.

¢ Optimization and security on Big Data systems: advance in techniques and frameworks for
providing a security layer on platforms for data processing and serverless systems.

 Distribution on Al and Data Analytics models: advance in federation of Al techniques (e.g.
deep learning and data streams) on data processing platforms on the Edge.

Current secondees are Barcelona Supercomputing Center (BSC), Universidad de Murcia (UMU),
Zurich University of Applied Sciences (ZHAW), Technical University of Munich (TUM) and Techni-
cal University of Viena (TUW); visiting as hosts IBM T.].Watson Laboratories in Yorktown, New York
(YKT), IBM Research in Zurich (ZRL), IBM Ireland (IRL) in substitution of IBM Israel, and Nearby
Computing Barcelona (NBC). During the first period (M1 - M24), 13 visits were made, representing
46.5 secondment months (out of 118). Such secondments have produced collaborations and research
on topics such as 1) Scheduling and orchestration of Al workloads for GPU utilization, also Al-based
management systems; 2) Service of models for image inference and impact of input size in GPU-
based systems; 3) Al planning towards leveraging Graph Neural Networks and XGBoost for training
processes. From the current visits, five tasks have received contributions from secondments at IBM
New York, IBM Ireland, and NearbyComputing:

¢ Barcelona Supercomputing Center (at IBM New York)

— Performance and energy efficiency of SMLs in resource-constrained environments, i.e.
GPUs partitioning. (T4.1, T4.3, T4.4; BSC at IBM New York)
— Scheduling strategies for LLM adapters in resources, towards fairness/performance trade-
off. (T4.1, T4.3, T4.4; BSC at IBM New York)
* Zurich University of Applied Sciences (at NearbyComputing Barcelona)

— Observability tools and interfaces for Al-driven orchestration. (T4.5; ZHAW at NBC Barcelona)
— ML-driven orchestration Observability tools and interfaces for Al-driven orchestration.
(T4.5; ZHAW at NBC Barcelona)
¢ University of Murcia (at IBM New York and IBM Ireland)
- Impact on the performance of input size on single GPU inference model serving. (T4.1,
T4.4; UMU at IBM New York)

— Study of GPU performance for image classification and time series predictive algorithms.
(T4.4; UMU at IBM New York)

— Unsupervised FL optimization methods and aggregation. (T4.4; UMU at IBM New York.)

- Optimization Techniques Implementation in FL, methodologies for sensor data and RT
Anomaly mechanisms. (T4.1, T4.4; UMU at IBM Ireland)

¢ University of Munich (at IBM New York)

- Al Planning: Online Planner Selection with GNNs + XGBoost towards efficient training
processes. (T4.2; TUM at IBM New York)
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— Deep Learning Models Training Across Clouds and Continents. (T4.3; TUM at IBM New
York)

- Benchmarking Federated Machine Learning Applications in Edge Computing Systems.
(T4.4; TUM at IBM New York)
¢ University of Viena (at IBM New York)
- Feasibility of Probabilistic Programming for LLMs in Ansible. (T4.1; TUW at IBM New
York)
- Energy Efficient LLM Inference through Dynamic Pruning. (T4.1; TUW at IBM New York)
Finally, there are 3 secondments in progress at this time, regarding UMU at IBM Ireland, and 2
more secondments in preparation starting January 2025. In the next Deliverable 4.2, expected for

Month 48, the continuation of secondments will continue for BSC, UMU and TUM, covering Tasks
between 4.1 and 4.5.
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2 Secondements Description and Progress

2.1 Barcelona Supercomputing Center - IBM New York

2.1.1 Towards the throughput limit in LLM serving

Visitor: | Pol Garcia Recasens | Involved tasks: T4.1, T4.3, T4.4
Partner: | BSC Secondment host: | IBM New York. NY, USA

Introduction

Recent advancements in Large Language Models (LLMs) have revolutionized natural language
processing (NLP), setting new performance benchmarks across various tasks. However, serving
these models remains resource-intensive, often requiring distributed systems to manage their mem-
ory and computational demands. The emergence of Small Language Models (SLMs) provides a path-
way for resource-constrained scenarios, enabling high-performance NLP tasks with fewer resources.
Despite their smaller size, SLMs encounter limitations in serving throughput due to the sequential
nature of autoregressive decoding and low arithmetic intensity. Our work investigates how large
batching can achieve Pareto-optimal throughput on single accelerators, and how model replication
can optimize resource utilization for SLM inference.

Contribution

During the stay, we focused on evaluating the performance of Small Language Models (SLMs)
in resource-constrained deployment scenarios. While large models like GPT-3 require significant
resources, we explored smaller models capable of offering competitive performance with reduced
computational costs. To do so, we benchmarked models ranging from 125 million to 13 billion pa-
rameters on a cluster of 4 NVIDIA A100 GPUs, studying optimization techniques such as dynamic
and continuous batching for combining the inference of multiple requests, and Paged Attention to re-
duce memory fragmentation on the storage of intermediate results in the GPU. We generate requests
from the ShareGPT dataset, a collection of real conversations with ChatGPT. The prompt of each re-
quest is composed by 512 input tokens, and we limit the generation to 256 output tokens. Therefore,
each request requires storing KV pairs of up to 768 tokens in the KV cache, divided in blocks of 16
tokens allocated on-demand. This allowed us to restrict the experimental setting and study the theo-
retical bound where batching no longer improves performance. Once we find the optimal batch size,
we limit the memory allocation for that instance, and run multiple instances on the same GPU. We
show how this improves GPU utilization and the use of computational resources.

Results

Our analysis showed that for small models a single high-end accelerator has enough memory to
reach a Pareto-optimal throughput frontier given a large batch of requests. Beyond that point, allo-
cating more memory results in minimal or no improvements. In light of our results, we pave the way
for new optimizations in model serving, presenting an initial set of findings that show how model
replication on a single device improves overall inference performance. Further analysis should con-
sider a more realistic serving scenario with heterogeneous requests and devices, and explore model
replication with more suitable techniques.

Future visits/Collaborations

Currently, the collaboration is extended (in remote), expanding the experiments towards a novel
publication during 2025, and the possibility of next visits even after CloudStars.

2.1.2 Addressing Throughput vs Fairness trade-off in the Serving of LLM Adapters

Visitor: | Ferran Agull6é Lépez | Involved tasks: T4.1,T4.3,T4.4
Partner: | BSC Secondment host: | IBM New York. NY, USA

Introduction

In line with the growth and widespread of Large Language Models (LLMs), we can observe a
spread in the demand for LLM adapters. While LLM are large-scale models trained to have a high
proficiency in a wide range of Natural Language Processing (NLP) tasks, adapters are small-scale
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additions that adjust the general knowledge of LLMs to a more concrete and specific task. The use
of adapters is faster than training from scratch or fine-tuning a new model, which is a tedious and
long process that requires meticulous data curation and high computational capabilities, and yields
higher performance than methods such as In-Context Learning (ICL) [1] or prompt tuning [2, 3, 4, 5]
when the task at hand is different enough from the data used to train the LLM.

In this secondment, we have focused on scaling the serving of LLM adapters taking into account
both throughput and fairness. Despite the fact that adapters are smaller than their base model, their
size is not negligible, and all systems face a hardware limit that caps the total number of adapters
that can be served simultaneously. In this way, more adapters can be requested simultaneously than
the ones that can be served. The system scheduler needs to decide which adapters to serve first, in
what order, and when to leave space for other adapters. If it is not managed properly, it can provoke
a collapse in the throughput of the system or some serious starvation issues in the final users who
will receive an unfair service by the system. If adapters are constantly switched over, little batching
will be possible, and loading times from storage may slow down the system, causing a decrease in
the final throughput. On the other hand, if adapters swap very infrequently, users that send requests
to waiting adapters will experience delayed responses, receiving an unfair service compared to other
users.

Contribution

This balance between fairness and throughput was the principal focus of the work. The problem
to be solved, could be summarized in the following question: “In which priority, order and sequence
the requests for LLM adapters should be served to achieve a determined and acceptable trade-off be-
tween throughput and fairness when more adapters are requested than the ones that can be provided
simultaneously?” Such "determined" refers to the ability to change the ratio of the two factors using
an input parameter at the start of the execution. We define "acceptable" as the capacity to increase
system fairness without significantly reducing throughput, or vice versa.

In order to tackle this problem, we proposed a novel scheduling algorithm that is able to balance
performance and fairness when scaling the number of served LLM adapters over the number that
can be provided simultaneously. This algorithm provides fine-grained control over the above trade-
off through an input parameter, that will determine how the algorithm provides the priority, order
and sequence in which the requests of the system are meant to be served. The algorithm is inspired
on classical scheduling theory, and more especially, on the polling system model [6,7, 8,9, 10, 11]. We,
as well, leverage the work from Sheng et al. (VTC) in order to make our algorithm take decisions
based on fairness.

Results

At the current moment, we are finishing the experiments and preparing the research publica-
tion for the beginning of the coming year. We are comparing our findings to the default versions of
VLLM [12] and S-LoRA [13]. They are two frameworks developed as a result of two research publi-
cations about minimizing memory fragmentation, and they have become two notorious frameworks
in the overall serving research community.

The principal result is that the proposed scheduling algorithm is able to achieve the same through-
put of these two frameworks when serving LLM adapters with a clear improvement in the fairness
among the users of the system. In addition, if fairness among users needs to be prioritized over
throughput, the scheduling algorithm can be easily configured to increase the fairness to a desired
level at the cost of a corresponding decrease in the throughput of the system.

Future visits/Collaborations

During the experimentation phase of this work, we bumped into the Pareto-optimal throughput
plateau studied by Pol Garcia Recasens in a previous secondment. As a result, we are currently
working doing an expansion of his previous work towards a novel publication next year.
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2.2 Zurich University of Applied Sciences - Nearby Computing BCN

2.21 Observability tools and interfaces for Al-driven orchestration

Visitor: Ranjan Ojha | Involved tasks: T4.5
Participant: | ZHAW Secondment host: | NearbyComputing. BCN, ES
Introduction

Kubernetes as an omnipresent infrastructure to host cloud workloads has good techniques to
adjust the resource provisioning to the workload needs through static scaling and autoscaling. How-
ever, autoscaling is known to be an emergent area with an unsatisfactory degree of automation. In
this secondment, building upon previous research work conducted at ZHAW and the application
use case presented by the NearbyOne platform, the goal was to explore more intelligent scaling
within Kubernetes environments. Kubernetes offers a variety of autoscaling options, categorized as
pre-emptive (predictive) or reactive (responsive). Additionally, these algorithms can be classified as
cluster autoscalers (adding/removing nodes) or workload autoscalers (adjusting pod replicas). This
diversity creates challenges for deployment personnel, especially in Infrastructure as a Service (IaaS)
contexts. IaaS providers lack visibility into deployed applications yet must adhere to service level
agreements (SLAs), often leading to over-provisioning. Furthermore, the growing range of Kuber-
netes cluster types, including geographically distributed edge clusters, adds complexity. Considering
these factors and the potential for multi-cluster algorithms, a vast number of permutations require
testing. Our hypothesis has been that a new tool could address this gap by facilitating highly repro-
ducible experimentation that maintains realistic application behavior. This enables the evaluation of
various hypotheses to identify optimal autoscaling configurations.

Contribution

This secondment contributed to a realistic workload simulation based on user activity simulation.
Such simulations can be used to validate and refine predictive autoscaling strategies. The initial
investigation into web server load simulation revealed two primary estimation approaches. The
first approach focuses on user behavior modeling. This estimation considers a multitude of factors
to predict realistic traffic patterns, simulating scenarios like peak user activity. Factors influencing
this model could include user demographics, access times, and interaction patterns. The second
approach emphasizes application behavior prediction. Here, the estimation aims to capture how
the application itself responds to user input. This approach considers factors like resource usage
patterns based on different functionalities within the application. By combining these two estimation
segments, we created a comprehensive model of the overall cluster load experienced by the web
server. The model was realised with two existing open source tools: stress-ng, with a wrapper to
incorporate Kubernetes pods, and kés, as well as helper tools like Grafana to validate the results
visually. The resulting system is reusable in other Kubernetes-based cloud autoscaling contexts.

Results

To create realistic user behavior patterns, we obtained anonymized container usage data from
Google Cloud for a month. While the data exhibited variations in sampling frequency, we down-
sampled it by daily averaging to create a per-day usage rate for the entire month. Subsequently,
we normalized the data using min-max normalization. Our focus wasn’t on replicating specific ap-
plication usage but rather on user behavior patterns, based on the assumption that increased user
requests would translate to higher resource utilization. The results show a root mean square error
(RMSE) of not more than 0.22 across ten pods, confirming a highly accurate prediction of workload
given a known user request pattern. Hence, our experiments demonstrate the effectiveness of our
tool in approximating real-world application behavior. This capability makes it suitable for training
various algorithms by providing a reproducible black-box testing environment that simulates poten-
tial application scenarios. The successful replication of actual application behavior from a Google
dataset using our methodology strengthens this claim. Our results dataset has been published under
the name ‘Simulated application load on a Kubernetes system based on Human traffic pattern” at
Zenodo: https:/ /zenodo.org/records /11210559
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Future visits/Collaborations

This has been the first out of several planned secondments of research staff from ZHAW to Near-
byComputing. It defined the topic stream of the future secondments, the second of which also took
place later in 2024 and is documented below.

2.2.2 ML-driven orchestration Observability tools and interfaces for AI-driven orchestration

Visitor: Sepideh Shamsizadeh | Involved tasks: T4.5
Participant: | ZHAW Secondment host: | NearbyComputing. BCN, ES
Introduction

Autoscaling and orchestration of cloud workloads across sites/clusters remains a challenge. While
the previous secondment has contributed to workload estimation and scaling decisions, it is also im-
portant to keep the user (engineer deploying the application) in the loop and give hints on scaling
and other configuration settings based on the user intent. The secondment therefore focuses on in-
tegrating Large Language Models (LLMs) into the NearbyOne orchestration platform to enhance
decision-making for cloud-edge platform orchestration. This involves designing an LLM-powered
decision engine to optimize energy efficiency and reduce latency in resource allocation and work-
load distribution. The project addresses challenges such as collecting platform metrics and translat-
ing high-level user intents into intelligent orchestration actions. At the time of reporting, two out of
three secondment months have passed. Hence, the following description describes work in progress.

Contribution

Significant progress has already been made during this secondment. Scripts have been developed
to simulate Prometheus and Thanos for monitoring and metrics collection, alongside a tailored script
to retrieve marketplace-related data from the NearbyOne platform. These efforts support the design
of an LLM-based decision-making engine that translates high-level user intents into actionable com-
mands for the platform and Kubernetes, such as deploying, deleting, migrating, or auto-scaling. Ad-
ditionally, a preliminary demo has been conceptualized to showcase the integration of LLMs within
the orchestration platform. Here, the open research question is the selection of language models
ranging from domain-specific vocabulary to general-purpose trained models which are known to
be suboptimal from an energy efficiency point of view due to high resource consumption during
training.

Results

Initial experiments using simulated Prometheus and Thanos environments demonstrate that the
LLM-powered decision engine effectively interprets and analyzes system metrics. Closing the loop
from out-of-bounds metrics to missing or incorrect configuration directives in the NearbyOne Ku-
bernetes configuration appears to be possible. Results highlight the feasibility of incorporating also
marketplace data into the decision-making process, enabling smarter orchestration of preconfigured
applications. Early tests suggest optimal orchestration decisions, with ongoing work focused on val-
idating scalability and further improving relevant metrics under real-world conditions.

Future visits/Collaborations

As the second secondment from ZHAW to NearbyComputing, it consolidated the previous work
and led to a more results-oriented exchange. Moreover, it helped define the subsequent (third) sec-
ondment, which will take place in the second project phase in early 2025, and therefore intensifies
the exchange around intelligent cloud-edge infrastructures and how to make this intelligence useful
for distributed applications deployment.

2.3 Technical University of Munich - IBM New York
2.3.1 Choosing a Classical Planner with Graph Neural Networks

Visitor: | Jana Vatter | Involved tasks: T4.2
Partner: | TUM Secondment host: | IBM New York. NY, USA

Introduction
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Automated planning is a major area of AL. The main objective is to realize sequences of actions
which are then typically executed by autonomous systems, self-driving vehicles, or intelligent agents.
For each planning problem, a planner can be chosen. As numerous planners have been developed
which adress different aspects, planning is a complex task. Due to the fact that no single planner
is optimal for all domains, portfolio-based approaches have emerged. Here, multiple planners are
aggregated into a portfolio. Out of this portfolio, the optimal planner for each individual task is se-
lected. The choice of optimal planner is a difficult task and can be tackled by using machine learning
approaches. One of these approaches includes Graph Neural Networks (GNNs) where the graphs
represent individual planning problems. Like this, we can learn the optimal planner for a given
planning problem. The goal is to enhance a large-scale planning dataset to improve the performance
of the planner selection task. In addition, different ways to pick a planner are explored and we use
Extreme Gradient Boosting (XGBoost) in combination with GNNs for a resource-efficient approach.

Contribution

Our work explores the planning portfolio, the corresponding planning graphs, four GNN archi-
tectures, different node features, and various ways to choose a planner. In more detail, we investigate
the strengths and weaknesses of the GNN architectures and analyze how they impact the predictions.
As features, we focus on the node degree and neighbor type. The first way how we choose a planner
is by predicting the probability that a planner solves the task, the second way is to predict the time it
takes each planner to solve the task. To select a planner in a resource-efficient, but effective way, we
use graph representations obtained by GNNs as input to other ML methods such as XGBoost.

Dataset and features

The International Planning Competition (IPC) dataset we are using contains tasks from various
domains and the performance of the 17 planners in the portfolio. There are 2,439 planning graphs
in the dataset, 2,294 graphs for training and validation and 145 graphs for testing. Splits for cross-
validation are also provided, a random split and a domain-preserving split. The domain-preserving
split groups tasks of the same domain and ensures they are not split up. As node feature, the node
type is used indicating the node represents a constant, an action, or an effect. The labels are tensors
with 17 entries, each entry representing one planner of the portfolio. The value of the entries is the
time needed for the planner to solve the task. In case the time is above the threshold of 1,800 seconds,
it is set to 10,000 seconds.

GNN training

As GNN architectures, we use the Graph Convolutional Network (GCN), Gated Graph Neural
Network (GGNN), Graph Attention Network (GAT), and Graph Isomorphism Network (GIN). GCN
is commonly used in a variety of tasks and is inspired by image convolution. GGNN not only fo-
cuses on local information but also on long-range relations within the graph. GAT uses an attention
mechanism that supports the detection of local features. GIN is based on the Weisfeiler-Lehman
graph isomorphism test which indicates the similarity of two graphs making it especially powerful
for graph-level predictions.

Results

Overall, the accuracy when predicting the time is higher than predicting the probability. GIN
and GAT prove to be especially powerful with an accuracy of around 0.77 (time-based task). When
enhancing the node features with the in- and out-degree, the accuracy of GCN rises up to 0.87 (time-
based task). Another line of experiments explores combining GNNs with XGBoost. Here, we can
perform a third task: multiclass classification to directly pick one of the 17 planners. Our results
show that the classification task now performs comparable to the time-based task and we get accu-
racy values of slightly under 0.8 for GCN and GAT. It should be noted that the GNN plus XGBoost
approach is more resource-efficient than using a GNN only. The GNN experiments need to be trained
on a GPU while the combination with XGBoost can be run on a CPU in the same amount of time.

Future visits/Collaborations

We are continuing to collaborate and working on publishing the work at an Al-related conference.
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2.3.2 Enabling large-scale interactive exploration in data lakes with fast vector-based similarity

search

Visitor: Herbert Woisetschldager | Involved tasks: T4.4

Participant: | TUM Secondment host: | IBM New York. NY, USA
Introduction

As the amount of unstructured data within organizations increases rapidly, we need to find ways
of creating meaningful data representations in an unsupervised or semi-supervised fashion. For
this, efficient vector operations at scale are a critical success factor. This entails data summarization
systems capable of handling several hundred thousand requests with minimal processing latencies,
which will be discussed in detail. In this secondment work, we presented a system based on Torch-
Serve, FAISS, and Milvus for generating vector embeddings, similarity search, and clustering over
high-dimensional vectors, along with its performance evaluation and challenges.

Contribution

Principal work has focused on scaling data summarization for exploring massive-scale unstruc-
tured data lakes as part of WP 4.4. IBM Research has been developing a product line to enable
unsupervised exploration of massive amounts of data, including but not limited to images, videos,
text, and audio. The main problem with the implementation at the time was its high processing
latency for data clustering and its inability to run similarity search over high dimensional data rep-
resentations (vectors). As such, the task at hand was to create a new pipeline that allows real-time
computing over millions of data points in interactive user sessions to identify sample categories that
a model has problems predicting.

Results

The solution to the problem at hand was to create a modular pipeline that is capable of running
in a hybrid cloud setup. By decoupling the embedding generator (TorchServe) from the database
(Milvus) and the analytics suite (FAISS), we enable distributed use cases and maximize throughput.
Our core results show that the new design accelerates the data summarization pipeline by up to 7.1x
and brings processing latencies below 50ms for a data batch, i.e., enables real-time computing for
interactive user sessions.

Future visits/collaborations

Such collaboration will continue through future students and researchers at TUM.

2.3.3 Why Utilizing The Maximum Amount Of Memory (Almost) Never Leads To A Better Train-

ing Throughput
Visitor: Alex Isenko | Involved tasks: T4.3
Participant: | TUM Secondment host: | IBM New York. NY, USA
Introduction

We worked on an emerging strategy to train large deep learning models on scalable infrastruc-
tures known as Fully Sharded Data Parallel (FSDP). This strategy covers a portion of task T4.3, which
is focused on runtime estimation and cluster consumption for deep learning workloads by exploring
the stability of common training algorithms used in state-of-the-art data centers. FSDP uses a model-
sharding approach where model parameters are split across multiple devices. However, the actual
job runtime and VRAM consumption are not always consistent with current theoretical models.

Contribution

During his stay, Alexander profiled state-of-the-art models to help estimate training runtimes
and memory consumption. They produced a summary of the insights gathered by profiling FSDP
intricately, which resulted in finding non-deterministic memory allocation behavior by PyTorch and
providing some solutions to alleviate the problem. Additionally, they created a testbench for profiling
FSDP, focusing on VRAM consumption and analyzing the training of state-of-the-art models. Finally,
they published a blog post in the CloudStars dissemination blog that provides a full write-up of their
work.
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Results

The detailed results have been made public as a blog post (Click here). A summary of such post
is as follows:

The experiments revealed several critical insights regarding GPU memory management and its
influence on training throughput:

¢ Throughput vs. Minibatch Size: Training throughput increased steadily with minibatch size un-
til reaching a critical threshold, beyond which performance degraded. For the T5-3B model, this
threshold was identified at a minibatch size of 64. Beyond this size, at minibatch 69, throughput
decreased by 12% due to memory management inefficiencies despite the model staying under
the OOM threshold.

* Memory Fragmentation: Memory fragmentation emerged as a significant factor affecting through-
put. While PyTorch’s CUDA Caching Allocator (CCA) tries to optimize memory reuse, it can
lead to increased fragmentation in scenarios with fluctuating memory demands. This was ev-
ident in minibatch sizes close to the memory limit, where memory fragmentation resulted in
degraded performance.

* CUDA Allocation Retries: The experiments highlighted a high frequency of CUDA allocation
retries at larger minibatch sizes, particularly with FSDP. These retries caused significant syn-
chronization overhead, reducing throughput. For example, minibatch size 69 exhibited retries
at nearly every training step, while minibatch size 64 showed reduced retries but still high-
lighted room for optimization.

e Expandable Segments: The introduction of the expandable_segments parameter helped mit-
igate some issues by stabilizing memory allocation. However, this came with trade-offs, in-
cluding a small but consistent throughput penalty, especially noticeable at smaller minibatch
sizes.

* Model-Specific Behavior: Interestingly, not all models exhibited the same allocation patterns
under FSDP. For instance, the GPT2-XL model (1.6B) showed more stable memory behavior,
even at high minibatch sizes. This discrepancy suggests that model architecture influences
memory allocation dynamics, warranting further investigation.

* Ad Hoc Solutions: While expandable_segments provided a partial fix, other CCA tuning pa-
rameters either increased memory usage or introduced errors, highlighting the need for more
robust solutions. Alternative memory management approaches, like ColossalAl’s Gemini, showed
promise in early trials but require integration into mainstream frameworks like PyTorch.

The findings emphasize the importance of memory management in achieving optimal training
throughput, particularly when using strategies like FSDP for large-scale models. While current so-
lutions address some issues, the persistent challenge of memory fragmentation and allocation retries
underscores the need for further research and development in this domain. Future work could fo-
cus on integrating custom memory managers or refining existing tools to enhance the scalability and
efficiency of deep learning training pipelines.

Future visits/collaborations

Such collaboration will continue through future students and researchers at TUM.

2.4 University of Murcia - IBM New York & IBM Ireland
2.4.1 On Serving Image Classification Models

Visitor: Aurora Gonzélez Vidal | Involved tasks: T4.1, T4.4
Participant: | UM Secondment host: | IBM New York. NY, USA
Introduction
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Effective model inference has become essential in numerous interactive applications [14, 15, 16].
In deep learning, inference accounts for up to 90% of the infrastructure costs associated with de-
veloping and running ML applications, highlighting the need for high-performance, cost-effective
inference infrastructure’.

Examples of image processing applications include E-commerce and retail (Amazon and Pinter-
est use image inference for product search, discovery, and recommendation), social media (Instagram
for suggesting filters and detecting offensive content), autonomous vehicles to detect objects, pedes-
trians, and lane markings, enabling safe navigation, healthcare [17], precision agriculture[18] etc.

Model serving systems must be scalable, ensuring high throughput and efficient resource utiliza-
tion across compute units. This work aims to establish foundations for model inference in serverless
environments, focusing on dynamic resource allocation based on inference load and deadline re-
quirements. We will examine the fundamental factors for developing a generalizable optimization
model to aid in scheduling with deadline guarantees, optimizing available resource usage.

Contribution

Our work investigates inference time for image classification to propose a preliminary mathemat-
ical model that optimizes computing resources in soft and relaxed inference. We conducted experi-
ments using a single GPU and the EfficientNet model [19], a benchmark in computer vision known
for its efficient scaling of network depth, width, and resolution. EfficientNet’s scaling coefficient, ¢,
creates network variants from B0 to B7, with deeper and wider architectures supporting higher reso-
lutions. For our study, we used EfficientNet-BO which was pre-trained on the ImageNet dataset and
we will measure memory usage and perform general system profiling.

Measuring memory usage

The torch.cuda.memory_allocated() function is a method provided by the PyTorch library for Python,
and it is used to determine the amount of GPU memory currently allocated by your PyTorch tensors
and variables. This function specifically reports the amount of memory allocated in bytes on the
GPU device you are currently using for your PyTorch operations. In deep learning, the data that
is processed by neural networks is often stored in tensors (multi-dimensional arrays) on the GPU.
When creating those tensors and performing operations on them, PyTorch allocates GPU memory to
store these tensors. This memory allocation is necessary for computation. In order to monitor GPU
memory during the inference process, we have computed the prior and posterior allocated memory.

General system profiling

GPU warmup was originally proposed in 2017 [20]. Besides the GPU being in a power-saving
state, there can be a number of other reasons why the first launch of a kernel could be slower than
further runs because the GPU starts from a cold state. GPUs have startup overhead [21], including
memory allocation and driver initialization. Accounting for these delays is fundamental when a
deadline needs to be achieved: just-in-time compilation, transfer of kernel to GPU memory, and
cache content are some things to be taken into account.

All those parameters can be profiled. For such a purpose we have used the single file imple-
mentation of a hardware monitor from one of the authors [22]. Such a script includes 164 features
obtained making use of psutil that enables tracking of network bandwidth, disk read /write band-
width, disk read/write counters, context switches, average CPU load (1,5,15 min), memory utiliza-
tion and process memory (resident, virtual, lib, etc.). And if a GPU is available, over pynuvml and torch:
framebuffer memory, barl memory, gpu/memory utilization, temperature, power, throttle reasons,
statistics retrieved by torch.cuda.memory_stats(), average (small, large, all) segment size, average block
size, average inactive block size, allocation rounding overhead, memory fragmentation.

Results

The experiments were conducted on a system running the Debian 6.1.0-10-amd64 Linux distribu-
tion with kernel version 6.1.38-1. The hardware platform was x86_64 and the system was equipped
with an NVIDIA A100 GPU with 40 GB of VRAM, and computations were performed using CUDA
version 11.0.

Ihttps://aws.amazon. com/ec2/instance-types/inf1/
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Having studied experimentally the batch input size influence on memory and time and the mini-
batch size influence on time and other parameters we were able to formulate two mathematical mod-
els for the optimization of image inference.

In the soft real-time inference use-case, our goal is to minimize the number of GPUs that are
needed to deliver a response within a certain time considering again the constraints of available
GPUs, warm-up times, and linear batch size-latency relationships. The decision variables are as
follows:

¢ t;: The number of times GPU; is used (an integer).
* mbs;: The mini-batch size chosen for GPU GPU; (an integer).
* Ng: The number of GPUs to be used (an integer)

The constants:

e T: The total available time. This should not be exceeded by any of the GPUs, given that they
work in parallel (a decimal number).

N: The number of images that need to be processed in total in the given time (an integer).

NGPU: The maximum number of GPUs available (an integer)

M;: The maximum number of times GPU; can be used (a constant)

Size;: The images” input size for GPU;

The functions:

e [;: Latency per mbs; for GPU;

e W;: Warm-up time for GPU;

e MB;: The maximum mini-batch size for GPU; (a function of Size;).

Then, the optimization problem can be formulated as follows:

min Ng
s.t. Maximum;(W;(mbs;) 4+ t; - L;(mbs;)) < T

Y (ti+1)-mbs; > N
i 1)
1 <mbs; < MB; foralli
0<t;<M; foralli
1 < Ng < NGPU

In a relaxed inference use case, our goal is to maximize the number of images processed in a
given time while considering the constraints of available GPUs, warm-up times, and linear batch
size-latency relationships. The definitions with regard to decision variables, constraints, constants
and functions are almost the same as previously, except that we do not need to minimize the number
of GPUs that are used in this scenario. We are considering that a number of GPUs are reserved for
this task and we are interested in the operation of the system in order to maximize the throughput.
The optimization problem can be formulated as follows:

max NGPU x ) (t;+1) - mbs;
i

s.t. Maximum;(W;(mbs;) + ¢; - L;(mbs;)) < T )
1 < mbsi < MBZ' Vi
0<t; <M; Vi
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Solving this optimization problem will give us information about how to use the available GPUs
optimally, meaning with what mini-batch size and how many times, according to our limits.

For more in-depth results, I refer the reader to the published conference paper [23].

Future visits/collaborations

We have continued this collaboration in time with other secondments, looking for inference opti-
mization of different processes in Large Language Models.

2.4.2 Optimizing Cybersecurity Models for Edge Devices

Visitor: Carlos Herndndez Hidalgo | Involved tasks: T4.1, T4.4
Participant: | UM Secondment host: | IBM Ireland. Dublin, IR
Introduction

As edge devices become increasingly integral to cybersecurity systems, optimizing machine learn-
ing models for real-time intrusion and anomaly detection in resource-constrained environments has
become a pressing challenge. The secondment’s primary goal was to develop and enhance machine
learning models capable of performing efficiently on devices with limited computational resources.
This work specifically focused on deploying advanced optimization techniques to achieve a balance
between accuracy, model compactness, and deployment feasibility in edge scenarios.

Contribution

The contributions were the implementation of optimization techniques for machine learning,
with a particular emphasis on Quantization-Aware Training (QAT) and TinyML. These methods were
essential to enabling the deployment of models on devices with limited computational power while
maintaining performance. Using the CICIDS2017 dataset as a benchmark, I developed and evaluated
models for real-time anomaly detection.

I began by leveraging AutoGluon for automated model selection and optimization, identifying
suitable architectures that were then replicated in PyTorch to incorporate QAT. This process required
substantial model re-engineering to address quantization constraints. Strategic adjustments, such
as learning rate tuning and early stopping, ensured training stability. Additionally, I implemented
the INTELLECT methodology using real sensor data to demonstrate its effectiveness in edge-based
anomaly detection scenarios.

Results

The project achieved significant advancements in optimizing machine learning models for edge
environments. The quantized models developed during the secondment exhibited competitive per-
formance, achieving substantial size reductions with minimal accuracy loss. This balance between
compactness and accuracy highlights the feasibility of deploying such models in real-world edge
applications, paving the way for efficient anomaly detection in resource-constrained settings.

Future visits/Collaborations

The secondment fostered a strong collaborative relationship with IBM Ireland, opening avenues
for future work. We are planning a follow-up internship next summer (2025) in order to continue
our collaboration. Planned efforts include refining QAT implementations, expanding the scope of
datasets for anomaly detection, and integrating advanced notification mechanisms into real-world
edge devices. These initiatives aim to bridge the gap between theoretical advancements in machine
learning and their practical deployment in resource-limited environments.

2.4.3 On Confidential Computing Scheduling for LLMs

Visitor: Antonio Martinez Ibarra | Involved tasks: T4.1
Participant: | UM Secondment host: | IBM New York. NY, USA
Introduction

Confidential Computing addresses the need to protect data in use through computation within
hardware-based Trusted Execution Environments (TEEs) [24]. These secure environments ensure
data integrity, confidentiality, and code integrity by preventing unauthorized access or modification
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[25]. Confidential Virtual Machines (CVMs) operate within attested TEEs, shielding the VM’s code
and data from the hypervisor, host OS, other VMs, and the TEE’s hosting environment [26]. Al ex-
tends the need for protection to models, weights, algorithms, and outcomes [27]. Large Language
Models (LLMs), designed for complex natural language tasks, depend on sensitive data and are
computationally intensive [28], making them ideal for deployment in confidential environments to
safeguard data and ensure model integrity. Executing LLM inference in confidential environments
poses challenges due to security-related computational overhead, highlighting the importance of ef-
ficient workload scheduling to meet performance and Service Level Agreements (SLAs). Optimizing
scheduling and provisioning strategies for LLM workloads in CVMs is critical for secure and efficient
deployment. This work explores tradeoffs between latency, SLA attainment, throughput, and GPU
utilization in confidential and non-confidential settings.

Contribution

Experiments are set up to evaluate inference performance by generating test data for batches,
studying model loading and unloading times, profiling batch performance for each model, and de-
signing scheduling techniques. We measure system performance through metrics such as through-
put, latency, SLA attainment, and GPU usage under different input patterns, scheduling strategies,
and SLA limits, in both confidential and non-confidential settings.

Each experiment runs for 20 minutes, during which requests are sent to models based on prede-
fined distributions and input rates. These requests are handled using specific scheduling strategies
and tested against multiple SLA thresholds (40, 60, and 80 seconds). Identical experiments are con-
ducted in both confidential and non-confidential modes. The experimental setup includes a Python
script simulating traffic patterns and rates, a Flask API to batch and process inference requests us-
ing large language models (LLMs), and a Bash script iterating through combinations of SLAs, traffic
means, and scheduling strategies. Outputs include CSV files with detailed request logs, including
timestamps, model usage, batch size, latency, throughput, and CPU/GPU utilization, as well as logs
capturing model switches, runtime, and other relevant details.

We explore three traffic patterns: Gamma, representing random arrivals with inter-arrival times
following a Gamma distribution; Bursty, simulating alternating high-activity and idle periods; and
Ramp, which gradually increases traffic to a peak before tapering off. All traffic patterns are tested
with different input rates to ensure comparable average request arrival rates.

To meet SLA constraints and optimize throughput, scheduling strategies incorporate various
logic components. The “Best Batch” component maximizes throughput by waiting for full batch
sizes, while the “Timer” component ensures SLA compliance by processing incomplete batches if
necessary to avoid delays. “The Partial Batch” component processes smaller batches before switch-
ing models, and “Select Batch” component adjusts batch size dynamically based on traffic rates and
SLA limits. These strategies are tested individually and in combination to evaluate their effective-
ness under different conditions. The strategies tested as combinations of those components and their
specific goals ordered by increasing complexity are (i) “Best Batch” to set a baseline; (ii) “Best Batch
+ Timer” to meet SLAs while maintaining a reasonable throughput; (iii) “Select Batch + Timer” to
meet SLAs better and (iv) “Best Batch + Partial Batch + Timer” to meet SLAs and achieve higher
throughput.

The experiments are constrained by the availability of a single CVM with one GPU, capable of
loading only one model at a time. We use three models from Huggingface—Granite (granite-7b-
base), Gemma (gemma-7b), and Llama (Meta-Llama-3.1-8B)—to study their performance across var-
ious configurations. The experiments were conducted on a virtual machine with an NVIDIA H100
80GB HBM3 with driver version 550.54.14, CUDA Version 12.4, PyTorch 2.4.0+cul21 and Python
3.10.12. The system was running Ubuntu 22.04-amd64 Linux distribution.

Results

Latency is measured as the time taken since a request is sent from the user until it is dispatched by
the server after performing inference. Non-CC is 20-30% lower than in CC mode, and that conduct
is shared across all the three input distributions, being the bursty pattern yields worse results than
gamma and ramp distributions. The same applies to higher SLAs.
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SLA attainment is measured as the percentage of requests that get a response in less time than
the SLA limit. For SLA 40 completion rates are lower because there is not enough time to handle
the workload and for SLA 60 and 80 completion rates improve, as expected. Since SLA attainment
is inversely proportional to latency, the bursty pattern has the lowest percentage of attainment. The
scheduling method that works best for these metrics is the “SelectBatch+Timer” as intended. The
reason behind that is that while other strategies aim for higher batch sizes and therefore wait more
before processing, this one usually deals with lower batch sizes, thus a lower overall waiting time
before processing. As for confidential vs non-confidential settings: with SLA 40 completion rates are
50% vs 70%, with SLA 60 CC vs Non-CC stands at 70% vs 85%, and for SLA 80 both modes achieve
above 90% for CC and non-CC, respectively.

Overall throughput is the throughput measured as total requests processed divided by total run-
time. The three strategies that contain the “BestBatch” logic achieve a similar throughput, much
higher than the one with “SelectBatch”. Overall throughput is similar for every pattern, with bursty
being slightly lower. Throughput for the non-confidential setting is between 45 and 70% higher than
for CC mode, even though the processing rate during inference, that is the number of requests pro-
cessed divided by the time since the models start to process the batch until it has finished, is similar
across all input rate means, patterns and strategies. Consequently, the additional overhead of loading
times from swapping models translates into that difference in throughput.

GPU usage only accounts for GPU usage exclusively for inference, since we are interested in
utilizing GPU the maximum time possible for that purpose, and it is measured as the percentage of
total runtime that the models are performing inference. Results show that the GPU usage is around
50% higher for Non-CC than for CC, and in both cases that utilization percentage is lower than 50%.
The same occurs for the other SLAs. Then, the question regarding where the remaining time is may
arise. That time is most likely in loading the models into the GPU and to a much lower extent, in
unloading models and the scheduling process itself.

The number of model swaps was also recorded and we found that the swap count is similar for
both CC and Non-CC, which means that each switch for CC is much more expensive in terms of time
than for Non-CC.

To summarize, the main findings for the CC and Non-CC comparison are:

* Latency is higher and SLA attainment is lower in the CC setting, mainly due to model loading
times.

¢ Overall throughput and GPU usage is lower for CC, again due to model loading times (even
though model switches are the same).

e Is it possible to estimate CC setting values knowing how the Non-CC setting performs? It
would be possible to make a reasonable estimation, but a clear relationship needs more work
to tell with certainty.

The repository of this project is publicly available at https://github.com/Antonio-MI/sincere

Future visits/collaborations

We are working on publishing the results of the secondment in a Al-related conference and open
to explore further into the topic of scheduling for confidential computing.

2.4.4 LLM-based security policy processing automation using Retrieval Augmented Generation

Visitor: Pablo Ferndandez Saura | Involved tasks: T4.4
Participant: | UM Secondment host: | IBM New York. NY, USA
Introduction

The secondment focused on developing a Retrieval Augmented Generation (RAG)-based frame-
work for processing Windows systems security mitigation policies written in the STIXv2 format. Se-
curity mitigation policies often include high-level guidelines that require precise and actionable steps
for effective implementation. To bridge this gap, the RAG approach integrates a vector database and
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a sequence of large language model (LLM) queries to enhance the translation of abstract policies
into executable tasks and corresponding Win32 API calls. The RAG methodology is particularly ad-
vantageous in this context, as it provides a mechanism to retrieve relevant contextual knowledge
dynamically, overcoming limitations of standalone LLMs in domain-specific tasks. The project also
sought to evaluate the performance of this framework compared to a traditional, non-RAG-based
approach. The emphasis was on reducing irrelevant API calls, improving precision, and enhancing
recall to ensure that all essential API calls for the given policies are correctly identified. This work
highlights the critical role of RAG in enabling intelligent retrieval systems that augment LLM ca-
pabilities and demonstrates its application in a real-world use case with significant implications for
Windows system security.

Contribution

This secondment delivered several key contributions, advancing both the theoretical and practical
aspects of RAG-based frameworks in security contexts:

* Pipeline Design: A novel pipeline was developed to process high-level security policies, trans-
forming them into actionable tasks and API calls. This included detailed workflows for prompt
engineering and integrating LLMs with retrieval systems.

* Comprehensive API Call Repository: Over 2600 Win32 API call descriptions were scraped, pro-
cessed, and embedded into a vector database, forming a critical knowledge base for the RAG
framework.

* Evaluation Metrics and Results: Extensive experiments demonstrated the superiority of the RAG-
driven approach in precision, recall, and Fl-score, validating the hypothesis that combining
retrieval-based context with LLMs can significantly improve task-to-API translation.

* Open-Source Contributions: The project led to the creation of reusable tools and scripts for future
extensions of this work and potentially to be used for other related projects.

These contributions not only address the immediate use case of Windows security policy translation
but also provide a template for adapting similar methodologies to other domains.

Methodology

The methodology employed in this work reflects a structured approach to leveraging RAG for
security applications:

1. Policy Selection and Ground Truth Creation: A subset of mitigation policies for Windows systems
was chosen from a MITRE GitHub repository, focusing on those translatable into API calls.
Tasks derived from these policies were generated using a structured LLM prompt, and ground-
truth API calls were manually curated for validation purposes.

2. API Repository Construction: A Python web scraper, utilizing the bs4 library, retrieved detailed
descriptions of over 2600 Win32 API calls. Each API call was stored as a text document con-
taining its name and a brief description, forming the basis for the vector database.

3. Vector Database Population: Documents were processed using LangChain functionalities, includ-
ing document loaders, text splitters, and embedding models. The all-mpnet-base-v2 model
from HuggingFace was employed to generate embeddings, which were stored in a Chroma
vector database.

4. Prompt Engineering for LLMs: Two distinct prompts were crafted: the first to convert policies
into tasks and the second to generate API calls from task descriptions. These prompts included
detailed instructions to guide the LLM outputs, ensuring consistency and relevance.

5. RAG Pipeline Implementation: The pipeline incorporated a retriever to fetch the most relevant
API descriptions for each task. These retrieved descriptions, combined with the task details,
were fed into an LLM to produce the final set of API calls.
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6. Experimental Validation: The RAG pipeline was tested on 14 tasks derived from six policies, with
performance compared against a non-RAG baseline using metrics such as precision, recall, and
Fl-score.

This systematic approach ensured robust testing of the RAG framework while maintaining repro-
ducibility and scalability.

Results

The experimental results underscore the advantages of the RAG-driven approach:

* Precision: The RAG framework reduced irrelevant API calls in outputs, achieving a precision
score significantly higher than the non-RAG baseline.

* Recall: By leveraging a vector database for contextual retrieval, the framework ensured all rele-
vant API calls were included, improving recall values.

* Efficiency: The integration of embeddings and vector retrieval systems streamlined the transla-
tion process, reducing overall computation time while enhancing output quality.

A detailed analysis revealed that tasks involving highly specialized policies benefited most from the
RAG approach, where retrieval of domain-specific knowledge played a critical role in improving
outcomes. These findings validate the initial hypothesis and demonstrate the potential of RAG for
practical applications in system security.

Future visits/collaborations

We expect and encourage future visitors to continue this work, working on extending the ground
truth, enhancing the experimentation process, adapting the framework to other environments (e.g.,
Linux-based systems security policies), etc.

2.5 Technical University of Wien - IBM New York
2.5.1 Feasibility of Probabilistic Programming for LLMs in Ansible

Visitor: Nathanael Nussbaumer | Involved tasks: T4.1
Participant: | TUW Secondment host: | IBM New York. NY, USA
Introduction

The primary goal of this secondment was to investigate the feasibility of generating synthetic
values for options in Ansible programs using probabilistic programming. These synthetic values
would be used in templated Ansible programs and be integrated into real world datasets of Ansible
Programs. These would serve as valuable resources for training Large Language Models (LLMs) on
the Ansible programming language. As of now, our research on this problem is promising but not
conclusive and TUW will further collaborate with IBM on this subject.

Contribution

Ansible is a programming language designed for software provisioning and application deploy-
ment. As such it is often used in cloud orchestration and managing cloud infrastructure. Due to
endless possibilities, Ansible is a complex programming language and creating an Ansible program
is not always straightforward. With the recent rise of Large Language Models for coding (Github
Copilot, AWS CodeWhisprere, ChatGPT, etc...), writing code has become more accessible than ever
before. While these models often work well with popular programming languages (Python, Java,
JavaScript), their performance is often lacking with less used programming languages, due to the
smaller size of training data. Creating a LLM that works well with Ansible would help improve
the language’s accessibility and reduce time spent on creating Ansible programs. Unfortunately, as
with other less-used programming languages, only relying on publicly available data for training
an LLM on Ansible is not sufficient and other approaches need to be found for improving model
performance. One such approach is generating synthetic data to increase the size of our training set.

Ansible, as a language, is structured in Modules and every Module has Options. For some pop-
ular Modules in Ansible, the distributions of Option values are well known (many examples exist)

Page 16 of 23



HORIZON - 101086248 CLOUDSTARS
18/12/2024 MSCA SE

while others lack examples. To assist in creating a synthetic dataset of Ansible programs and further
develop an LLM for Ansible code generation it is key that good values are generated. This is why
we narrowed the project scope down to generating synthetic values for options, which can be used
in Ansible templates.

Results

* Building an end-to-end model pipeline for generating synthetic values for Ansible Options.
* Evaluating multiple Topic Modeling algorithms on parts of our problem.

* Developing a novel Topic Modeling strategy.

These results allow us to keep an open research collaboration with each other and continue work-
ing on this problem together. It is important to us, to put the time we spend in the secondment to
good use, which is also why we are not rushing to publish our findings and developed code just yet,
but rather take our time to complete the evaluation properly.

Future visits/Collaborations

IBM and TUW will further collaborate on this topic and work together towards an open-source
release of our developed code in the next 2-3 months. Furthermore, we will add new algorithms to
our model pipeline for comparison and plan on finalizing the evaluation of all algorithms in the same
time frame. Finally, we will develop different probabilistic models to make use of the learned topic
distributions and compare their results with each other. Depending on the novelty of our findings
we are planning on publishing our results afterwards.

2.5.2 Energy Efficient LLM Inference through Dynamic Prunning

Visitor: Shashikant Ilager | Involved tasks: T4.1
Participant: | TUW Secondment host: | IBM New York. NY, USA

Introduction The secondment focused on energy-efficient LLM inference. I collaborated with the
Hybrid Cloud Infrastructure team, with Eun Kyung Lee as my manager. I also had frequent meet-
ings with Yue Zhu and Chen Wang. LLM inference platforms are becoming highly resource-intensive
due to the high number of user requests and the diverse models available for tasks in the backend
infrastructure. This necessitates developing efficient inference mechanisms that manage trade-offs
between accuracy, throughput, and resource consumption.

Contribution and Results We conducted a detailed literature review and performed a state-of-
the-art analysis. Specifically, we focused on efficient inference for code generation. We addressed
the code generation problem using dynamic early exit as a pruning method to manage the trade-off
between accuracy, latency, and energy consumption. The problem was modeled as a dynamic learn-
ing agent with a Markov Decision Process. We solved this problem using a reinforcement learning
agent, implemented with LLama 3B and OPT-2.7B parameters. Our initial experiments suggest that
it is possible to significantly reduce the energy cost of code generation tasks by developing an adap-
tive learning agent for early exit. This work will contribute to developing efficient LLM inference
platforms.
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3 Secondments in Progress

At the moment of writing this document, there are three secondments to be completed:
* Diego Sanchez Garcia (T4.1; UMU to IBM Ireland), from September to December 2024.
* Jose Manuel Bernabé Murcia (T4.1, UMU to IBM Ireland), from September to December 2024.
¢ Eduardo Canovas (T4.1; UMU to IBM Ireland), from September to December 2024.

They are expected to return in mid-December, and their contributions and future collaborations will
be reported in the next deliverable D4.2.

Additionally, there are secondments in preparation, to start January 2025, with the process of
travel, visa, and work plan in progress:

* Pol Garcia Recasens (T4.5; BSC to IBM Ireland), from January to July 2025.
¢ Joan Oliveras Torra (T4.1; BSC to IBM New York), from February to June 2025.

Such secondments and continuous collaboration will also be reported in the next deliverable D4.2.
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4 Summary of Contributions
4.1 Task 4.1 - Optimizing LLM and Model Serving through GPU Accelerators

In this task, the dedicated work explores advancements in efficient model serving, spanning various
domains including large and small language models (LLMs), image classification, and confidential
computing. The first contribution investigates throughput optimization for Small Language Mod-
els (SLMs), demonstrating that on single accelerators, Pareto-optimal throughput can be achieved
via large batching and model replication. Also, in image classification serving, mathematical opti-
mization models were developed to balance GPU usage with throughput and deadlines. And lastly,
the energy-efficient LLM inference work employs dynamic pruning using reinforcement learning
for code generation tasks, achieving energy savings without substantial accuracy loss. Collectively,
these contributions address critical challenges in model serving, offering practical optimizations to
balance resource efficiency, scalability, and security.

4.2 Task 4.2 - Resource Planning for GNN processes

The research done in this task focuses on improving automated planning by selecting optimal plan-
ners for specific tasks using machine learning, particularly Graph Neural Networks (GNNs). The
research utilized a portfolio of 17 planners and a dataset from the International Planning Competition
(IPC) to train and validate their models. By leveraging four GNN architectures (GCN, GGNN, GAT,
and GIN) and combining GNNs with Extreme Gradient Boosting (XGBoost), the study achieved
significant advances in predicting planner performance. This hybrid approach proved to be more
resource-efficient while maintaining high accuracy, opening pathways for scalable planner selection
solutions.

4.3 Task 4.3 - Resources Trade-off for LLMs

The research done in this task focuses on developing a novel scheduling algorithm to address the

trade-off between throughput and fairness when serving requests for LLM adapters. LLM adapters,
though smaller than their base models, can face hardware limits when requested in high volumes.

The scheduling algorithm provides fine-grained control over prioritizing throughput or fairness

through a configurable input parameter. Initial results demonstrate the algorithm’s ability to match

the throughput of established frameworks like vLLM and S-LoRA while improving fairness among

system users.

4.4 Task 4.4 - Security for Models and LLMs in Edge-IoT

This task focuses on security and privacy in modeling Cloud systems. The first research effort fo-
cuses on enhancing machine learning models for intrusion and anomaly detection on resource-
constrained edge devices. By leveraging techniques like Quantization-Aware Training (QAT) and
TinyML framework, the study achieved compact and efficient models that maintained competitive
accuracy. Also, the second research efforts focused on developing a Retrieval-Augmented Gener-
ation (RAG) framework to automate the translation of high-level Windows security policies (in
STIXv2 format) into actionable tasks and API calls. The methodology integrated a vector database
and large language models (LLMs), addressing challenges in precision and recall of API call outputs.
The framework showcased its superiority over traditional approaches, significantly improving task-
to-API translation accuracy while laying a foundation for applications in broader security contexts.

4.5 Task 4.5 - AI-Driven Orchestration

This last task focuses on Al-Driven orchestration. The first research efforts focus on improving Ku-
bernetes autoscaling by simulating realistic workloads to optimize resource provisioning. By lever-
aging user behavior modeling and application behavior prediction, the performed secondment cre-
ated a comprehensive model for web server load using open-source tools such as stress-ng, kés, and
Grafana. Real-world data from Google Cloud was employed to validate the approach, achieving
high accuracy in predicting workload patterns. The outcome demonstrated the tool’s potential for
black-box testing in Kubernetes-based autoscaling scenarios, forming a basis for future research.
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Furthermore, a second research effort focuses on integrating Large Language Models (LLMs)
into the NearbyOne platform to enhance orchestration decisions. This work aimed to translate
user intents into efficient scaling and resource allocation actions while optimizing energy use. Using
simulated environments with Prometheus and Thanos, the team demonstrated early success in de-
signing an LLM-powered decision engine capable of interpreting metrics and making actionable rec-
ommendations. Ongoing work includes refining scalability and validating results under real-world
conditions.

4.6 Tasks and Secondees Relation

Host | Task 4.1 Task4.2 Task4.3 Task4.4 Task4.5

BSC Pol Garcia Recasens YKT X

Ferran Agull6é Lépez YKT X X X
ZHAW  Sepideh Shamsizadeh NBC

Ranjan Ojha NBC
TUM Jana Vatter YKT

Herbert Woisetchldger YKT X

Alex Isenko YKT X
UMU Aurora Gonzélez Vidal YKT X X

Carlos Hernandez Hidalgo | IRL X X

Antonio Martinez Ibarra YKT X

Pablo Ferndndez Saura YKT X
TUW Nathanael Nussbaumer YKT X

Shashikant Ilager YKT X X

Table 1: Relation of Secondments per Task
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5 Conclusions

This deliverable reports and summarizes the secondment tasks performed for Work Package 4 on
Al-Driven Cloud Management. Such secondment works have made advances on topics related to
optimizing LLMs and classic ML model serving, enhancing the computational efficiency of GPU ac-
celerators on LLM and Al workloads, and strengthening security in AI/LLM processing frameworks.

Task 4.1 focused on innovations in LLM and SLM inference optimization, exploring GPU batch-
ing, model replication and energy-efficient strategies. Task 4.2 focused on Graph Neural Networks
(GNNs) for automated planner selection, employing hybrid models that integrate GNN architectures
with machine learning techniques, improving in resource-efficient and accurate planning. Addition-
ally, Task 4.3 focused on novel scheduling algorithm that effectively balances throughput and fairness
in LLM adapter request management. Task 4.4 focused on security for Models and LLMs in Edge-
IoT environments, enabling efficient anomaly detection models for constrained devices, and creating
RAG frameworks to translate complex security policies into actionable API calls with high precision.
Finally, Task 4.5 focused on Al-driven orchestration by advancing Kubernetes autoscaling models
through realistic workload simulations and enhancing decision-making via LLM integrations in or-
chestration platforms.

Such efforts have been performed in the laboratories of IBM New York (USA), IBM Dublin (Ire-

land) and NearbyComputing (Barcelona). Next secondments are focused on continuing such re-
search lines, with new visits to those industrial partners.
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